STANDARD GROWTH ASSAY - SHAKY SPEC

MAGIC BOOK

SHAKY SPEC GROWTH ASSAY DAY 1

Set up 5ml O/N in appropriate Hv-broth (YPC or Ca)

DAY 2

Dilute O/N in fresh Hv-broth, typically 1/500 dilution

DAY 3

Dilute O/N 1/10, to OD ~0.05, grow for ~2-3 hours

- [•] Pipette Hv-broth (YPC or Ca) into outer wells of 48-well (250µl) or 96-well (150µl) plate as blanks
 - See shaded wells above, helps prevent evaporation of samples
- [•] Dilute cultures and pipette in triplicate into microtitre plate, using 250µl (48-well) or 150µl (96-well)
 - Typically use 1/100 and 1/1000 dilutions, in pre-warmed Hv-broth
- [•]Seal lid to base with 1cm microporous tape, ensuring tape doesn't protrude above the edge
 - [•] Important to avoid tape adhesive being deposited on spectrophotometer
- [^]Incubate at 45°C for 72 hours with double-orbital shaking at 425rpm (48-well) or 807rpm (96-well)
- ^{*} Take readings every 15 minutes and export data to Excel

ANALYSING SHAKY SPEC DATA, PART 1

- Export the data on the shaky spec to an Excel file
 - * Alternatively, export to a text file, then copy and paste the data into an Excel file afterwards
- Shaky spec will calculate the blank-zeroed, Spectronic-equivalent values but these may be inaccurate due to crystal formation in the blank samples. If necessary, calculate manually:

$\frac{(\text{sample reading - mean of blank readings})}{0.14} = \text{spectronic}$

- [•] Dividing by 0.14 accounts for path length in shaky spec, vs 1 cm path length in the Spectronic
- Cultures (e.g. with different inoculation volume, or under different conditions) must be aligned so that they reach a specific OD at the same time point
 - This must be done <u>first</u>, so that the mean and standard error calculated next are accurate
- Manually shift cells in the Excel spreadsheet until they align at a specific OD near the beginning of log phase (e.g. ~OD 0.2) as shown in spreadsheet:

H26								
Time	0mM	0.05mM	0.1mM	0.15mM	0.25mM	Mean	STD	STE
				0.0754				
				0.0754				
	0.08254			0.0754				
	0.08968	0.09683		0.08254	0.10397			
	0.08968	0.09683		0.08968	0.10397			
	0.1254	0.10397		0.09683	0.11111			
00:14:16	0.11111	0.10397	0.14683	0.10397	0.1254	0.11825	0.01821	0.00814
00:29:16	0.11825	0.13254	0.14683	0.11825	0.1254	0.12825	0.01195	0.00535
00:44:16	0.1254	0.14683	0.15397	0.13254	0.13254	0.13825	0.01174	0.00525
00:59:16	0.13254	0.13254	0.16111	0.13968	0.14683	0.14254	0.01195	0.00535
01:14:16	0.14683	0.14683	0.16825	0.14683	0.16111	0.15397	0.0101	0.00452
01:29:16	0.16111	0.15397	0.18254	0.16111	0.16825	0.1654	0.01083	0.00484
01:44:16	0.16825	0.16825	0.18254	0.1754	0.18254	0.1754	0.00714	0.00319
01:59:16	0.18254	0.18254	0.19683	0.18968	0.21825	0.19397	0.01481	0.00662
02:14:16	0.19683	0.19683	0.20397	0.20397	0.20397	0.20111	0.00391	0.00175
02:29:16	0.21825	0.21111	0.21825	0.21825	0.2254	0.21825	0.00505	0.00226
02:44:16	0.3254	0.23254	0.25397	0.23968	0.23968	0.25825	0.03833	0.01714

ANALYSING SHAKY SPEC DATA, PART 2

[•] Calculate the mean, standard deviation, and standard error of the aligned repeats

Standard error = $\sqrt{\text{Number of repeats}}$

[•] Plot the mean OD values (and standard errors) vs time on graph with log₂ scale on Y axis

Calculate the generation times using the following equations:

 $n = \frac{\log_{10} D_i - \log_{10} D_f}{\log_{10} 2}$ n = number of generations $D_f = end OD$ $D_i = start OD$ $G = \frac{t}{n}$ G = generation time t = time

[•]Alternatively, fit a line to exponential growth portion of graph and generate an equation

[•] Use equation to find the time at which sample reaches a specific OD (e.g. 0.2) and then the time at which it reaches double the first OD (e.g. 0.4)

The difference between these times is the generation time of the sample

MAGIC BOOK

CELLS PER ML @ OD650 VALUE

OD650	Cells/ml
0.022	9.00E+05
0.05	3.00E+06
0.09	1.20E+07
0.15	2.40E+07
0.25	8.00E+07
0.39	1.40E+08
0.86	3.50E+08
0.1	2.50E+07
0.2	5.00E+07
0.3	7.50E+07
0.4	1.00E+08
0.5	1.75E+08
0.6	2.50E+08
0.7	3.25E+08
0.9	4.00E+08

MAGIC BOOK

CALCULATING CULTURE DILUTIONS

Spec the culture

$$\frac{\text{Desired OD}}{\text{Actual OD}} = x$$

 $\frac{\text{Time till needed}}{\text{generation time of strain}} = y$

 2^{y} = dilution factor

$$\frac{\text{dilution factor}}{x} = \text{Actual dilution}$$